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ABSTRACT. We propose a rapid and precise method.to
solve the Laplace tidal equations. Using this method, and
taking into account the different duration of the solar
and sideral day, we have calculated the oscillatory modes of
the antisymmetric diurnal tide. We show that the ensemble of
the Hough functions is complete, each mode being associated
with one of these functions. The variations of tidal mode
with altitude can be deduced from their equivalent depths.

INTRODUCTION

The variation in tides with latitude is given by the Laplace eqﬁation,.fdr"/l*
which Hough [1897, 1898] gave the first method for resolution. Since this

important work, these solutions have been called Hough functions.-

Among the most significant tides, the diurnal tide is the last to be
solved — firstly, because the semidiurnal tide has the greatest amplitude
at ground level, and secondly, because the equations present difficulties
arising from the existence of so-called critical latitudes which do not
give rise to singularities [Brilloun, 1932] which differentiate it from other
tides by the presence of equivalent negative levels [Lindzen, 1966; Kato, 1966].
We are going to explain a method which allows rapid and precise resolution of
the Laplace tidal equations — a method we have used to compute the modes

of the antisymmetric diurnal tide. Our results show that the antisymmetric

#* Numbers in the margin indicate the pagination of the original foreign text.
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diurnal tide has modes which can be propagated upward far from the point of
excitation without being reflected, as is the case for modes which have a

very large or negative equivalent depth.
I. THE METHOD FOR SCLUTION

The Laplace tidal equation is written [Siebert, 1961]:
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with u = cos 6 (for the rest of the notation, we refer to our work in this /2

same journal).

We have here an equation with eigenvalues and eigenfunctions. The latter
are Hough functions. The equivalenf‘depth h, which is one of the factors of
the eigenvalue, appears as a seﬁaration constant when one assumes in the
velocity divergence equation that this depth is the product of a function of

depth multiplied by a function of ¢, and t [Wilkes, 1949; Siebert, 1961].

The expansion of Hough functions in one series of associated Legendre
functions yields a very rapid convergence. The problem is so constructed

that one may seek a solution in the following way. If we write Equation (1):
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We would then have to compute Ibnm==_f:P;Ch(p)P§du_t0 construct a

symmetrical matrix which one may diagonalize to find 8. .

Unfortunately, the II m,n give a divergent matrix, and the method cannot

be used.

We are going to show that, using a relation given by Hough, a matrix can

be constructed which (though not symmetrical) is convergent and has eigenvalues



which are values of h with a known constant.

The Hough relation is:
@-o Chog + (81— P) Ci + YaClys = 0. 2)

- . . s . .
Ci is the coefficient of the Legendre associated function Pn in the expansion
of the Hough function Ci.,=Ci ,=0 ,
n=sg, 8+ 2, s+ 4,.. for symmetric tides

=g+ 1, s+ 3, s+ 5 for the antisymmetric tides.
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Expression (2) consitutes an infinite set of homogeneous algebraic equations in

which the unknowns are Ci.

The matrix of coefficients
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is also an equation with eigenvalues. The matrix:
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is a non-~symmetrical, convergent, tri-diagonal matrix. 1In general, one cannot
diagonalize a matrik of this type, but it can be made triangular which amounts
to the same thing for the purpose of obtaining the eigenvalues. It is known
that the eigenvalues are real [Kato, 1966], and for that reason we have
selected the Francis [1961 - 62] QR algorithmic method to attain supertriangu-
lation. This method is applicable when the matrix is reduced to the Hessemberg

form, i.e., with aij = 0 for i>/j+1 .

It is apparent that Matrix (8) is a simplified Hessemberg form. We are

(0)

going to say a few words about the Francis method. We call M the initial

matrix, the elements of which are a o
At the outset, we must make a substitution
Mo — 0 I
(0)

where p is determined.by the smallest value taken from

| Tt — ann | and | 729 — ann |

where @ and /¥ are the eigenvalues of 2 x 2 block lower right.
By then effecting rotation in the planes
R — 1,n)... R(I;Z}‘(M‘O":—'p‘wl) = Ro
one obtains
MW = Ro (R(L,2))"... (R(n — 1,m)T + o]

Iterations of the same type are continued.

3
.eigenvalue, The last row and column are deleted, and we continue to work with

When M(S) is.reached in which a_ . , is negligible, a is taken as the /3
- . n,n.—l : : .0

4



smaller and smaller matrices.
The eigenvalues are given in decreasing order of their absolute values.

We haveldone the calculations for the symmetrical diurnal tide with f = 1/2

in such a way as to be able to compare the results with those of Kato.

Using a matrix with 20 x 20 elements, we have obtained the same results
for P that the author obtained using the continuous - fraction method with 100

terms.
This work took us less than two minutes using the IBM 7040 at Meudon.
We must note that in these computations we obtained other values of P.

We retain the eigenvalues, which do not vary when the order of the truncated

matrix is varied.
II. THE ANTISYMMETRIC DIURNAL TIDE

If we do not take into account the difference between solar and sidereal
days, Hough functions are all orthpgonals'vdth the associated Legendre .
. funetion P% [Lindzen, 1965]. They are not sufficient to ekpand all the heating
functions, since they do not constitute a complete system. If one takes
account of the difference as is normally done for the other tides, f is
equal to 0.498635, rather than 1/2.

In this case, Equation (1) allows antisymmetric solutions which we have

computed by the preceding method. Values of h are given by the expression

P = 0.011349 h (km).



The table shows the values of h and the coefficients for the primary functions.
Coefficients are given for normalized Hough functions and normalized associated
Legendre functions. We have found equivalent negative and positive depths for
the antisymmetric diurnal tide. We designate the functions O}(4 #) with
"= - (s + v) being the number of modes for the function in the interval being

defined.

Figures 1, 2, 3, 4, and 5 represent the variation with latitude of
functions and of NS and EW wind components. Although the equivalent depth for
the first mode is positive, it is so large that the solution of the radial
equation will necessarily be exponential. If we accept that among these
solutions the only possible ones are those that decrease with altitude, the
first mode cannot play an important role in the upper layers of the atmosphere,
far from sources of excitation. The an, 3rd and Ath modes have equivalent

negative depths. The same factors apply, therefore, as for the 1St mode.
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The Sth mode has a positive equivalent depth with a value which must give
a sinusoidal type solution to the radial equation. This mode can be propa- :
gated upward and can cross (without reflection) the negative temperature

gradient zone below 80 km.



TABLE

EQUIVALENT DEPTHS AND COEFFICIENTS FOR EXPANSION OF HOUGH
FUNCTIONS IN A SERTES OF ASSOCIATED LEGENDRE FUNCTIONS.

1
el.(-ld)

01 Blis ‘ Olio Oliw Ol (’3}.(.10) }.(-m O
h [km] 803 — 1,814 — 0,646 — 0,329 - 0,238 — 0,199 ~ 0,133 - 0,095 0,072
cl 0,9999 | 0,0021 0,0009 0,0005 0,0007 | 00003 | 0,0002 | 0,0002 | 0,0003
cl - 0,0025 : ig:‘o,81'99j |, 03502 | 0,2068 0,2879 0,1407 | 10,1037 | 10,0805 | 0,1184
Cci to,5512 0,2983 | -0,2615 | -0,5774 | -0,2018 | -0,1577 | -0,1264 | -0,2118
lo 0,1522 | -0,7288 | -0,2425 0,6013 | -0,0859 _-o,oz~9—; -0,0066 | 0,1088
cl 0,0237 | -04762 | 04134 | .04145 0,3685 | 0,2776 —_o,zno 0,1717
Ciz 0,0024 | -0,1695 —(;,6608 0,2079 ”—0,1124 -0,67;;— -0,12;34— -0,44;1;_
Ch 0,0002 | -0,0394 | 04341 | -0,0799 | -04584 | -0,3772 | - 0:5;46})' _—;5;538—
Cls "= 0,0065 0,1765 0,0243 | -0,6100 | -0,0098 0,1983 | -0,4870
) Cis - 0,0008 0,0506 | -0,0060 | -0,4061 0,4745 | 10,3443 | 0,336l
Cio 0,0109 | 00012 | -0,1805 | 0,5708 | -0,0657 | -0,1904
Cis 0,0018 | -0,0002 | -0,0593 | 0,3858 | -0,4777 | 0,0910
"¢l 0,0002 -0,0152 | 10,1830 | -0,5396 | -0,0374
Cis - 0,0031 0,0664 | -0,3700 | 10,0133
Cis L -0,0005 | 0,0193 | -0,1847 | -0,0042
Czl;o [ 0,0046 | - 0,0723 0,0011
ch [ v 0,0009 | -0,0231 | -0,0003
cle il 0,0001 | -0,0062°
Cis . - 0,0014
Cis ' - 0,0002
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The iength of the vertical wave

for such an oscillation (computed
from the 1965 CIRA model) is on the

order of 12 km between altitudes of
90 and 120 km.

CONCL.USION

We have found a method for
computing solutions of the Laplace
tidal equations by devising an equa-

tion with eigenvalues. This method

In particular, we have computed

the antisymmetric diurnal tide which is as easy to calculate as the others if

one takes into consideration the difference between solar and sidereal days.

allows us to obtain equivalent tidal.
depths quickly and to a close approximation.



With the Hough functions thus complete, all excitation functions can be
expanded in a series of these functions. We have found (similar to the symmet-
ric tide) equivalent positive and negative depths, and (except for the first
mode) a confinement. phenomenon around the equator for the positive depth and

beyond 50° latitude for the negative depth.

Among the first (and in keeping with theory) there is only 31“4 ~which

could be observed in the upper atmosphere.

If one considers carefully the seasonal variation for the diurnal tide
at 93 km altitude as given by Roper [1966], it is apparent that there are two
large peaks at the equinoxes and two small peaks at the soltices.  The two
large peaks must correspond tb symmetric modes, and the two small peaks to

. , . . 1
antisymmetric modes -— in particular S1 4
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